Human Wild-Type Tau Interacts with wingless Pathway Components and Produces Neurofibrillary Pathology in Drosophila
نویسندگان
چکیده
Pathologic alterations in the microtubule-associated protein tau have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and frontotemporal dementia (FTD). Here, we show that tau overexpression, in combination with phosphorylation by the Drosophila glycogen synthase kinase-3 (GSK-3) homolog and wingless pathway component (Shaggy), exacerbated neurodegeneration induced by tau overexpression alone, leading to neurofibrillary pathology in the fly. Furthermore, manipulation of other wingless signaling molecules downstream from shaggy demonstrated that components of the Wnt signaling pathway modulate neurodegeneration induced by tau pathology in vivo but suggested that tau phosphorylation by GSK-3beta differs from canonical Wnt effects on beta-catenin stability and TCF activity. The genetic system we have established provides a powerful reagent for identification of novel modifiers of tau-induced neurodegeneration that may serve as future therapeutic targets.
منابع مشابه
Modulation of tau pathology in tau transgenic models.
NFTs (neurofibrillary tangles) in Alzheimer's disease and in tauopathies are hallmark neuropathological lesions whose relationship with neuronal dysfunction, neuronal death and with other lesions [such as Abeta (amyloid beta-peptide) pathology] are still imperfectly understood. Many transgenic mice overexpressing wild-type or mutant tau proteins have been generated to investigate the physiopath...
متن کاملHigh copy wildtype human 1N4R tau expression promotes early pathological tauopathy accompanied by cognitive deficits without progressive neurofibrillary degeneration
INTRODUCTION Accumulation of insoluble conformationally altered hyperphosphorylated tau occurs as part of the pathogenic process in Alzheimer's disease (AD) and other tauopathies. In most AD subjects, wild-type (WT) tau aggregates and accumulates in neurofibrillary tangles and dystrophic neurites in the brain; however, in some familial tauopathy disorders, mutations in the gene encoding tau cau...
متن کاملHuman tau increases amyloid β plaque size but not amyloid β‐mediated synapse loss in a novel mouse model of Alzheimer's disease
Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aβ) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aβ. Recent evidence suggests that tau...
متن کاملDysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau.
Tau is a highly abundant and multifunctional brain protein that accumulates in neurofibrillary tangles (NFTs), most commonly in Alzheimer's disease (AD) and primary age-related tauopathy. Recently, microRNAs (miRNAs) have been linked to neurodegeneration; however, it is not clear whether miRNA dysregulation contributes to tau neurotoxicity. Here, we determined that the highly conserved brain mi...
متن کاملNontoxic singlet oxygen generator as a therapeutic candidate for treating tauopathies
Methylene blue (MB) inhibits the aggregation of tau, a main constituent of neurofibrillary tangles. However, MB's mode of action in vivo is not fully understood. MB treatment reduced the amount of sarkosyl-insoluble tau in Drosophila that express human wild-type tau. MB concurrently ameliorated the climbing deficits of transgenic tau flies to a limited extent and diminished the climbing activit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 34 شماره
صفحات -
تاریخ انتشار 2002